INRIA Sophia Antipolis – **STARS team**

Institut National Recherche Informatique et Automatisme

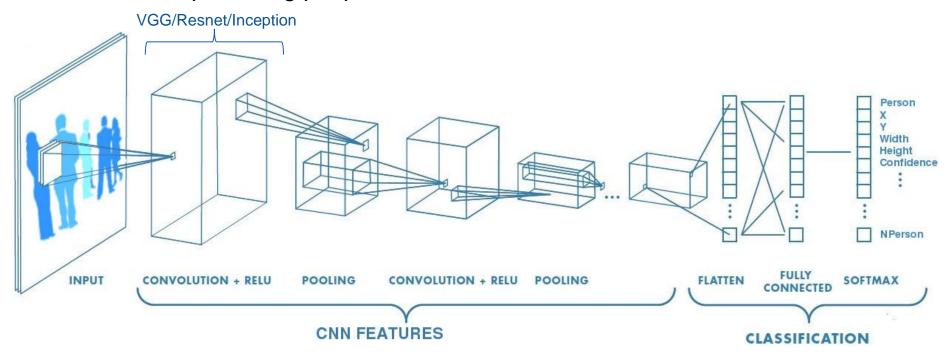
Furgan Khan and Francois.Bremond@inria.fr

http://www-sop.inria.fr/members/Francois.Bremond/

People detection : Faster-RCNN on MOT Video Protection

CNN Architecture: RPN - RCNN - SSD

Define the deep learning people detection architecture



People Tracking (MOT)

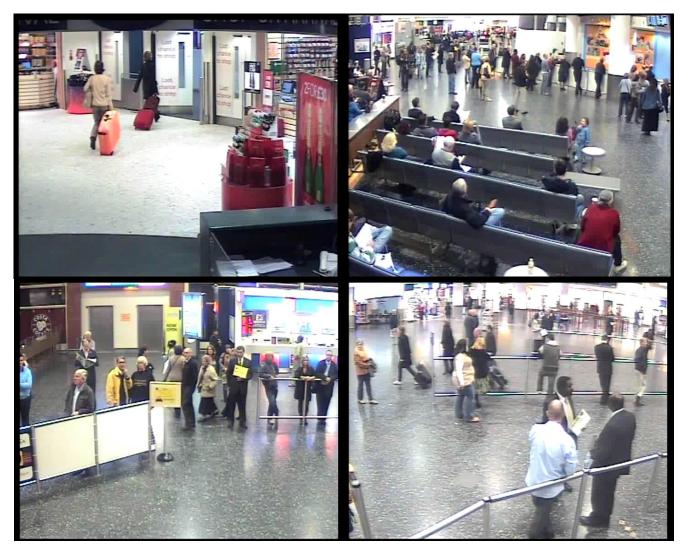
Multiple Object Tracking (MOT17) challenge:

- Our online tracker based on Residual Learning Transfer has the best performance for online trackers [AVSS18] for Mostly Tracked (MT) metric
- Results in progress, but still challenging (e.g. Objects are too small to track)

MOT17-07-SDP

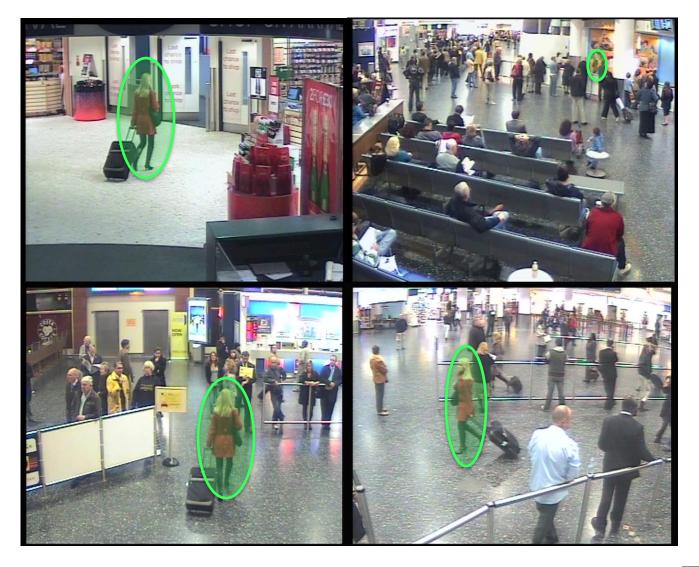
MT ↑	ML ↓	мота↑	MOTP	FP ↓	FN ↓	IDSw ↓	Frag \downarrow	
18%	37%	46%	│	#	#	#	#	l
			76%					ĺ

Person Re-identification (Slawomir BAK)



CCTV cameras, UK: 4M, London: 1.8M Human can not perform efficient surveillance after 12minutes 5

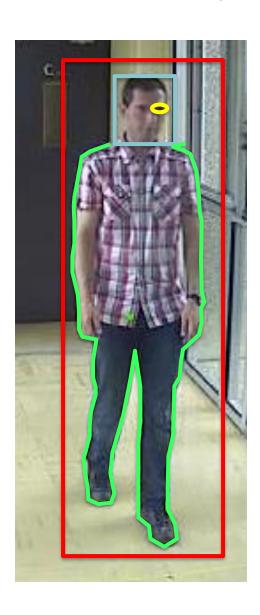
Person Re-identification



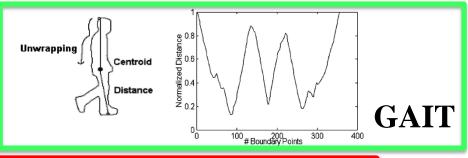
Person Re-IDENTIFICATION Problem

THE OBJECTIVE IS TO **DETERMINE** WHETHER A GIVEN **PERSON OF INTEREST** HAS ALREADY BEEN OBSERVED OVER A **NETWORK OF CAMERAS**

Person Re-IDENTIFICATION



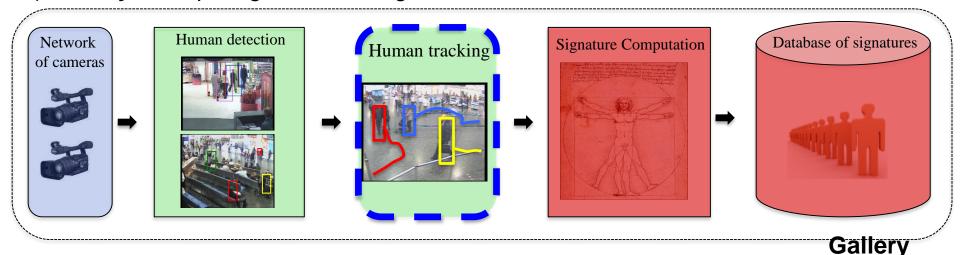




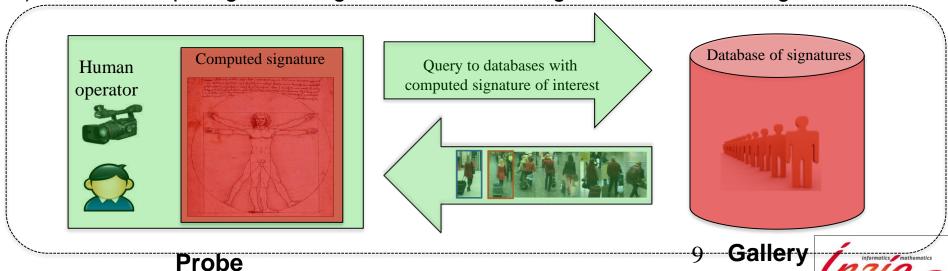
Global Appearance

How? In two steps: 1) Gallery and 2) Probe

1) Gallery: computing the visual signatures in the database



2) **Probe**: computing a new signature and retrieving it from the stored signatures



Main Challenges

COLOR

VIEWPOINT

OCCLUSION

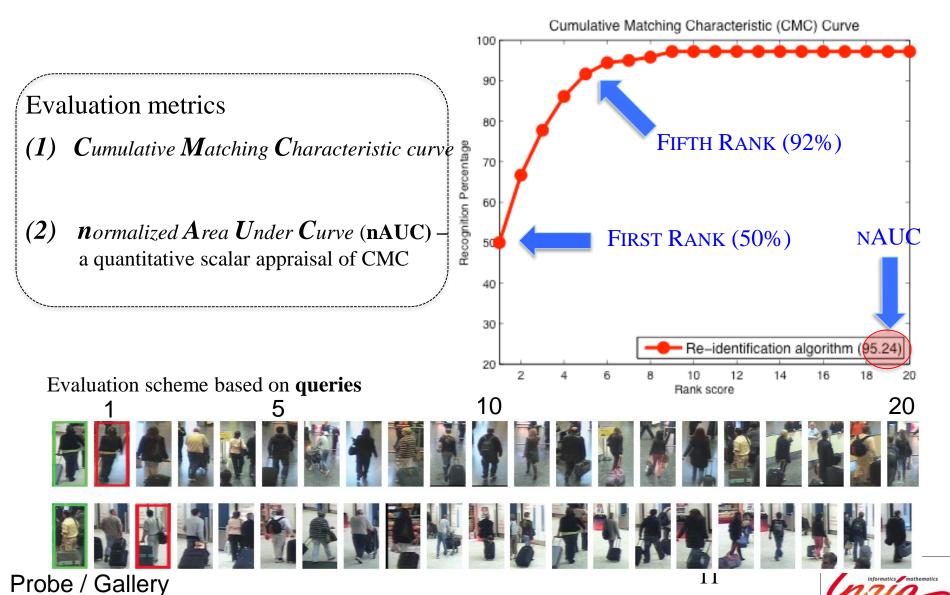
DETECTION

DISCRIMINATIVE FEATURES

Inspired by **human memory** and in particular - **recognition memory**

Informatics mathematics

People Re-identification (ReID): Performance Evaluation



Comparison with state-of-the-art ReID

Bak et al, "Boosted human re-identification using Riemannian manifolds", Image and Vision Computing 2011

i-LIDS-MA

- -40 individuals
- in average 46 images per camera
- -manually detected

i-LIDS-AA

- -100 individuals
- -in average 50 images per camera
- -automatically detected

People Re-identification (ReID) – F. Khan

Practical issues – towards real-world

- Imperfection of automated detection and tracking systems
 - Misalignment
 - Partial visibility
 - ID switches when one track has images from two people at different time intervals (corrupted tracklets)
- Many Metrics for Multi-shot set based metrics
 - Minimum/Average Pointwise Distance, Local metric fields, collaborative coding
- Metric (Supervised) learning improves performance BUT requires data annotation – limits scalability

People Re-identification (ReID) [Khan AVSS16]

Signature representation:

- Signature = Part Appearance Mixture (PAM) or Multi Channel Means (MCM)
 - Each GMM mixture represents distribution of several feature descriptors in the image cells

Feature descriptors:

- shape Histogram of Gradients (HoG) [Dalal05];
- color Color Spatio-histogram (CSH) [Zeng CVPR-W15];
- texture Brownian Covariance (BCov) [Bak ICIP12].
 - For re-scaled and histogram equalized images of 64 x 192 pixels
 - Separately over 3 x 11 overlapping rectangular grid
- Local Maximal Occurrence (LOMO) [Liao CVPR15], HSCD [Zeng CVPRW15]
- Deep Features from Conv4 or Conv5 of VGG16 Fine-Tuned

Metrics

- Minimum Pointwise Distance (MPD) => M = I, Euclidian dist. (no training)
- KISSME => M trained using manually annotated data (supervised training)
- UnKISSME => M trained using automated data (unsupervised training)

M: Mahalanobis Distance for KissMe

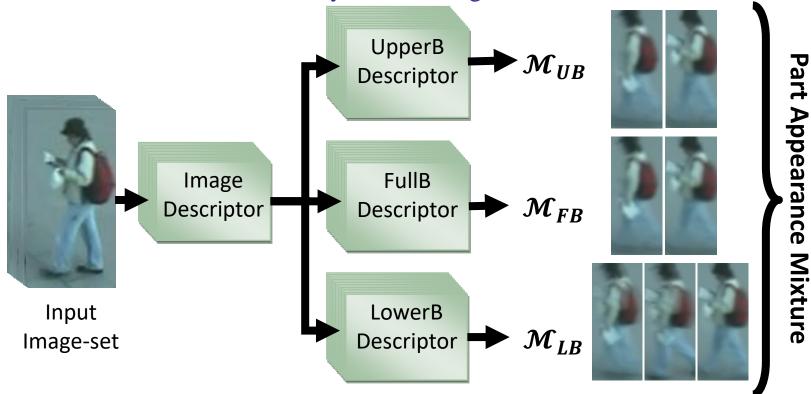
Part Appearance Mixture (PAM)

PAM model for appearance

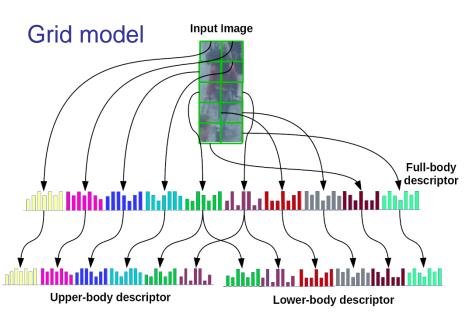
Three part models

Each part a multi-modal parametric distribution

Simultaneous mode-discovery and learning



Person Re-identification Visual Signature

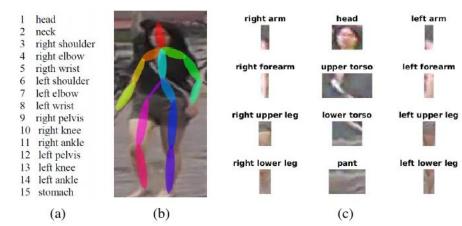


Parts share computation

Features:

HOG – 8 bins unsigned, 11x3 grid over 192x64 image, RGB channels LOMO – 3 scales, HSV + SILTP histograms, max-pool horizontally

Body Part model



Semantic Attribute model

Gender=female
Hair=long hair
Up=short sleeve
Down=short lower body clothing
Clothes=pants
Hat=no
Backpack=no
Bag=no
Handbag=no
Age=teenager
UpColor=white
DownColor=black

Comparison with state-of-the-art ReID

 Comparison with supervised methods using recognition rate at rank r in %: PRID 2011

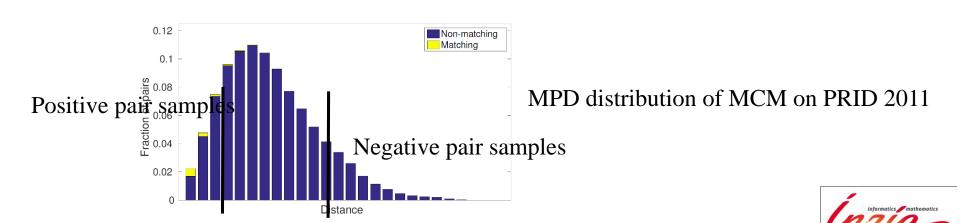
Method	r=1	r=5	r=10	r=20
Color+DVR [Wang14]	41.8	63.8	76.7	88.3
ColorLBP+DVR [Wang14]	37.6	63.9	75.3	89.4
ColorLBP+RSVM [Wang14]	34.3	56.0	65.5	77.3
DVR [Wang14]	28.9	55.3	65.5	82.8
DSVR [Wang16]	40.0	71.7	84.5	92.2
Salience+DVR [Wang14]	41.7	64.5	77.5	88.8
SDALF+DVR [Wang14]	31.6	58.0	70.3	85.3
STFV3D+KISSME [Liu15]	64.1	87.3	89.9	92.0
MCM+KISSME[AVSS16]	[64.3]	86.1	[94.5]	[98.0]
PAM+LOMO+KISSME [WACV17]	92.5	99.3	100	100

Conv4 96%

Performance of unsupervised learning

Recognition rate at different ranks in % when using **MCM (PAM)** representation under different modes of learning

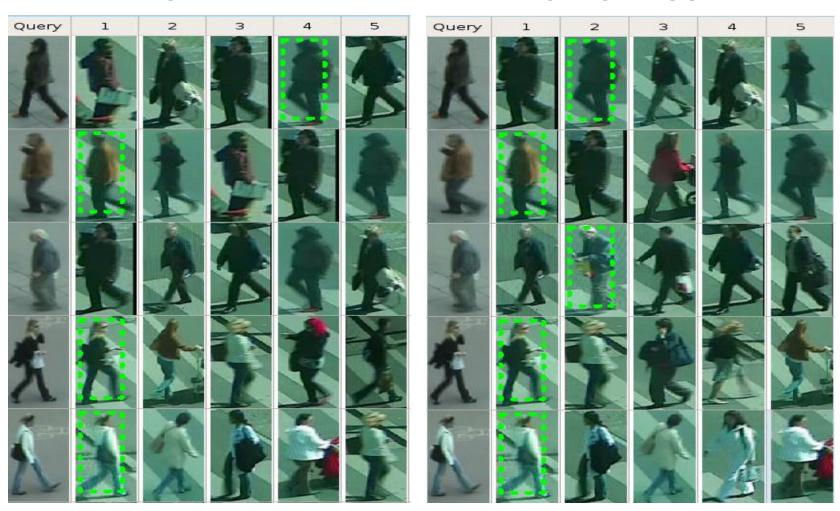
Method	PRID 2011			iLIDS-VID			iLIDS-AA					
	r=1	r=5	r=10	r=20	r=1	r=5	r=10	r=20	r=1	r=5	r=10	r=20
MCM + MPD	53.6	83.1	91.0	96.9	34.3	61.5	74.4	83.3	56.5	79.7	90.9	95.2
MCM + KISSME	64.3	86.1	94.5	98.0	40.3	69.9	79.0	87.5	62.9	84.7	93.4	97.0
MCM + UnKISSME	59.2	81.7	90.6	96.1	38.2	65.7	75.9	84.1	61.2	85.1	92.8	96.0



Qualitative Results on PRID2011

MCM-MPD

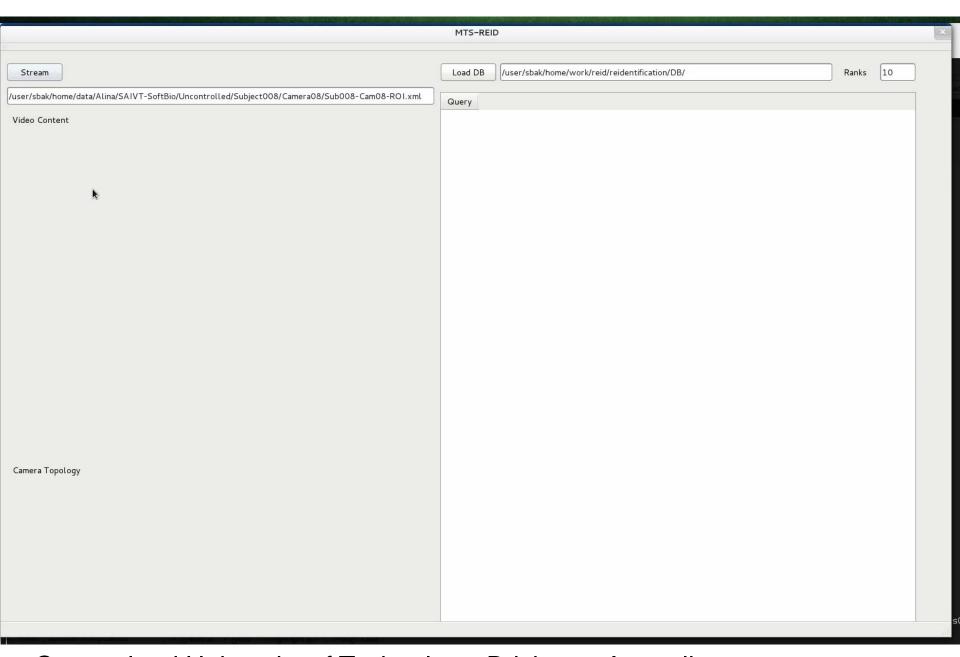
MCM-UnKISSME



Comparison with state-of-the-art ReID

 Comparison with unsupervised methods using recognition rate at rank r in %: PRID 2011

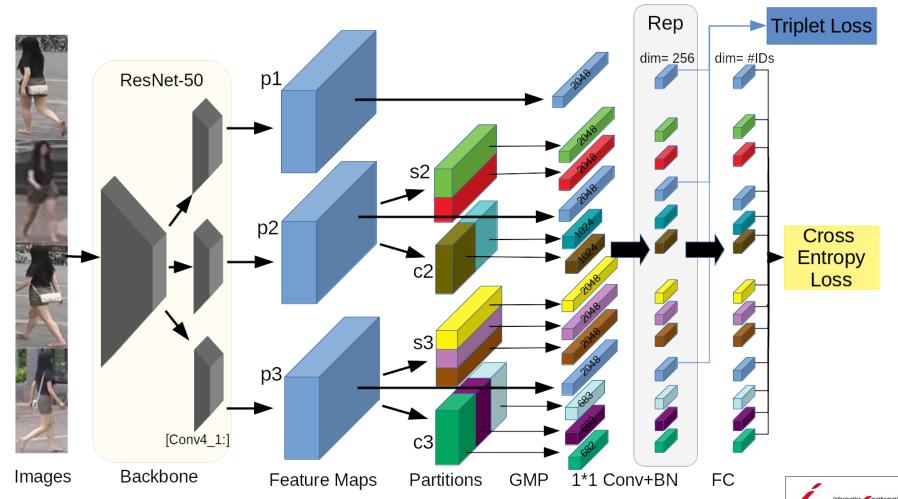
Method	r=1	r=5	r=10	r=20
Color+LFDA [Pedagadi13]	43.0	73.1	82.9	90.3
SDALF [Farenzena10]	5.2	20.7	32.0	47.9
Salience [Zhao13]	25.8	43.6	52.6	62.0
FV2D [Ma12]	33.6	64.0	76.3	86.0
FV3D [Liu15]	38.7	71.0	80.6	90.3
DVDL [Karanam15]	40.6	69.7	77.8	85.6
STFV3D [Liu15]	42.1	71.9	84.4	91.6
MCM+UnKISSME[AVSS16]	[59.2]	[81.7]	[90.6]	[96.1]



Queensland University of Technology, Brisbane, Australia 150 humans (400 frames) through up to eight camera views

Spatial and Channel partition CNN Representations (SCR) for Person Re-Identification & Large Dataset (Hao)

General Architecture of SCR:



Spatial and Channel partition Representations (SCR) for Person Re-Identification

Results

	Market-1501						
Method	Single	Query	Multiple Query				
	Rank1	mAP	Rank1	mAP			
TriNet [10]	84.9	69.1	90.5	76.4			
HA-CNN [18]	91.2	75.7	93.8	82.8			
GSRW [24]	92.7	82.5	-	-			
DNN_CRF [2]	93.5	81.6	-	-			
Mancs [27]	93.1	82.3	95.4	87.5			
PCB+RPP [26]	93.8	81.6	-	-			
SCPNet-a [4]	94.1	81.8	-	-			
HPM [7]	94.2	82.7	-	-			
MGN [29]	95.7	86.9	96.9	90.7			
CPM [35]	95.7	88.2	-	-			
SCR(ours)	95.7	89.0	96.7	92.2			
SCR(ours)+RR	96.4	94.7	97.0	96.0			

Table 6. Comparison of results (%) on Market-1501 dataset under Single Query and Multiple Query setting where the bold font denotes the best method. RR stands for Re-Ranking [40].

	CUHK03						
Method	Labe	lled	Detected				
	Rank1	mAP	Rank1	mAP			
HA-CNN [18]	44.4	41.0	41.7	38.6			
PCB+RPP [26]	-	-	63.7	57.5			
HPM [7]	-	-	63.9	57.5			
MGN [29]	68.0	67.4	68.0	66.0			
DaRe(R) [30]+RR	72.9	73.7	69.8	71.2			
CPM [35]	78.9	76.9	78.9	74.8			
SCR(ours)	83.8	80.4	82.2	77.6			
SCR(ours)+RR	88.6	89.4	88.3	88.5			

Table 8. Comparison of results (%) on CUHK03 dataset using the new protocol [40] where the bold font denotes the best method. RR stands for Re-Ranking [40].

Method	DukeMTMC-reID				
Method	Rank1	mAP			
HA-CNN [18]	80.5	63.8			
GSRW [24]	80.7	66.4			
DNN_CRF [2]	84.9	69.5			
Mancs [27]	84.9	71.8			
PCB+RPP [26]	83.3	69.2			
SCPNet-a [4]	84.4	68.5			
HPM [7]	86.6	74.3			
MGN [29]	88.7	78.4			
CPM [35]	89.0	79.0			
SCR(ours)	91.1	81.4			
SCR(ours)+RR	92.9	91.1			

Table 7. Comparison of results (%) on DukeMTMC-reID dataset where the bold font denotes the best method. RR stands for Re-Ranking [40].

Method	MARS			
Wiethod	Rank1	mAP		
IDE+Kissme [36]	68.3	49.3		
TriNet [10]	79.8	67.7		
DRSTA [16]	82.3	65.8		
M3D [15]	84.4	74.0		
SCR(ours)	87.3	81.3		
SCR(ours)+RR	88.1	87.4		

Table 9. Comparison of results (%) on MARS dataset. RR stands for Re-Ranking [40].

Spatial and Channel partition Representations (SCR) for Person Re-Identification

Examples on Market-1501

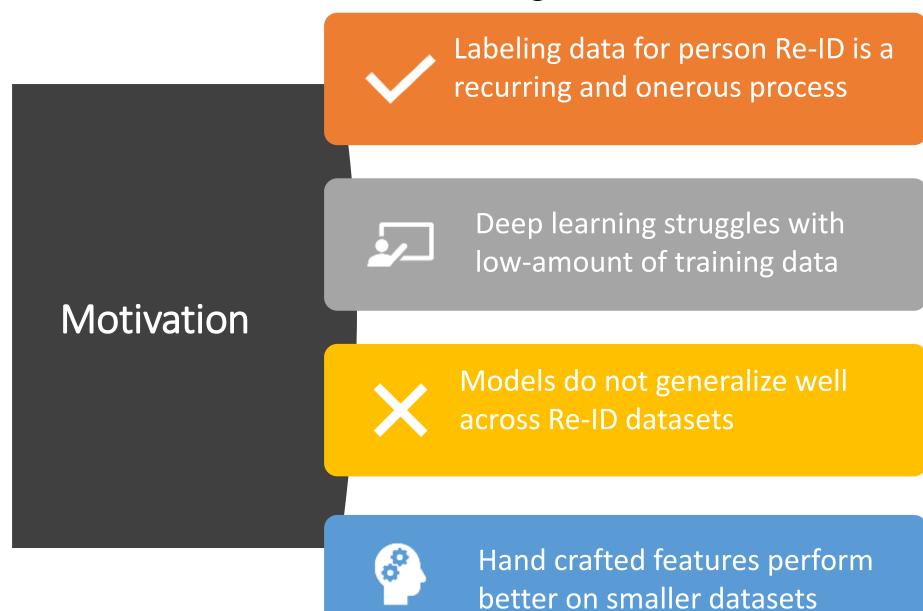
Success cases

High accuracy, but SCR requires large amount of labeled training data

Failure cases

Objective

Build Person Re-Identification (Re-ID) models using CNN with small amount of labeled training data



Residual Learning framework to transfer knowledge from one domain to another

Objective: Minimize residue in network's optimal and current performance

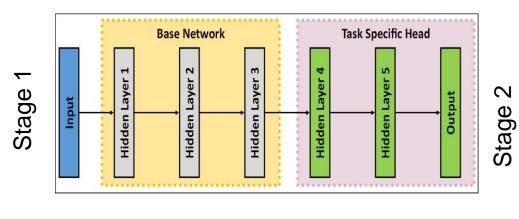
Fine-tuning - Learned parameters are modified

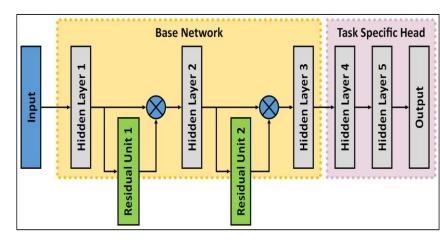
Network, except "head" is fixed

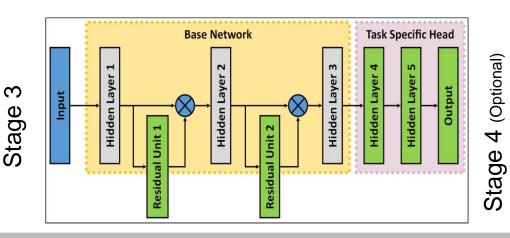
RTL - Add bottleneck layers and modify new parameters

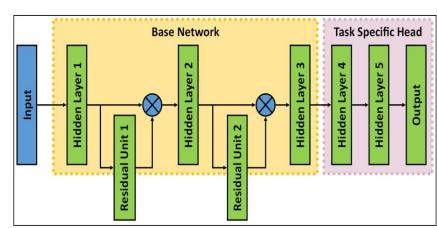
More flexible: bottlenecks may have different quantity and architecture from input layers

Residual Transfer Learning (RTL)









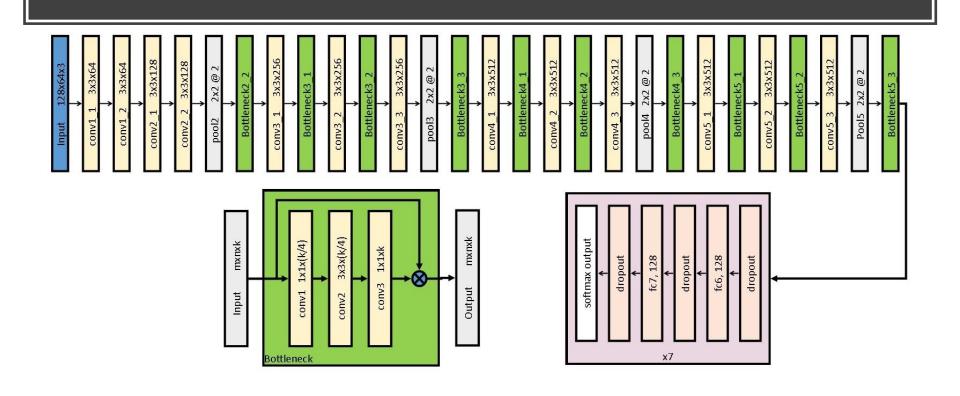
4 Stage Learning Process

Experimentation: RTL for Person Re-ID

Base Network: VGG16

7x Task specific heads, 1 for each local region

Train the network for Identity Discriminative Embedding (IDE)



Hybrid Modeling for Person Re-ID

Metric

Learn embedding space that increases intra-class similarity and reduces Learning inter-class similarity for input features KISS, XQDA, etc

Deep Learning

Task Specific Head imitates learned metric, i.e., for IDE, it embeds input features into a class discriminative space

Hybrid

Train for IDE, then discard Task Specific Head and use XQDA

Appearance description

8 descriptors per image

7 regions + 1 whole

For multi-shot Re-ID, aggregate descriptors by mean/max pooling

Experiments

Datasets:

iLIDS-VID, PRID and MARS

Models

 $B7 \equiv RTL-fc7 + Eucl$ $H7 \equiv RTL-fc7 + XQDA$

 $B5 \equiv RTL$ -pool5 + Eucl $H5 \equiv RTL$ -pool5 + XQDA

 $B4 \equiv RTL$ -pool4 + Eucl $H4 \equiv RTL$ -pool4 + XQDA

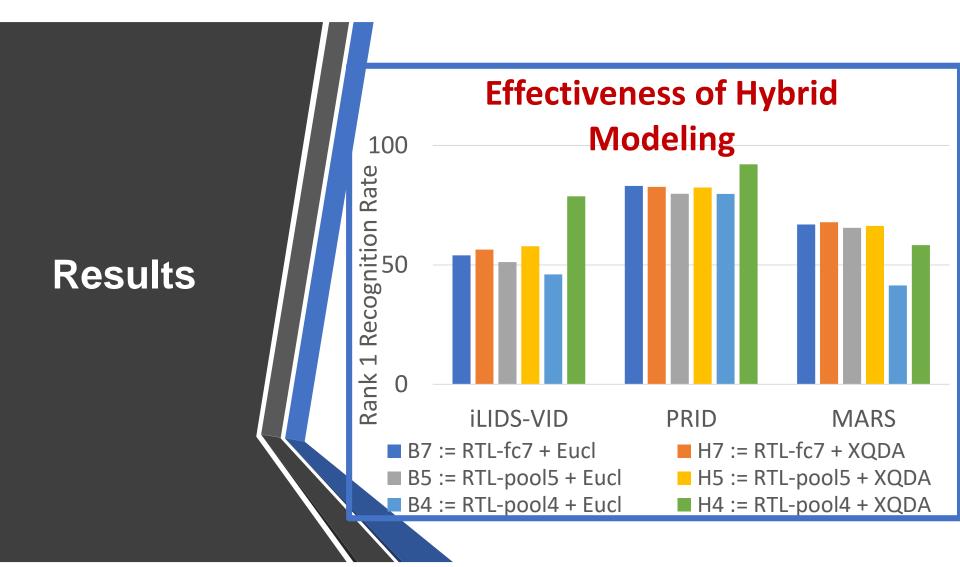
Results

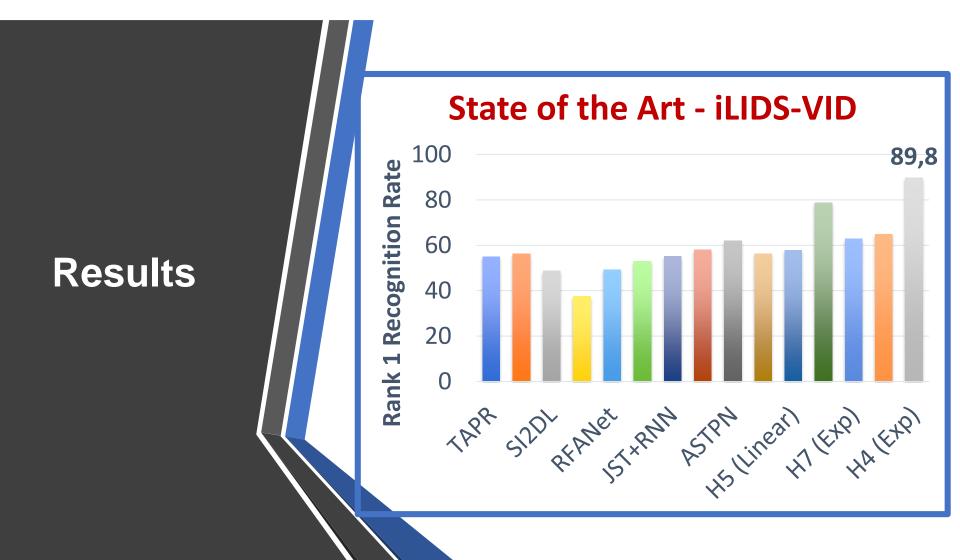
iLIDS-VID										
Stage										
1	34	18	32	46	42	69				
2	48	41	42	55	56	76				
3	53	50	45	57	58	77				
4	54	51	46	56	58	79				

		PRID									
Stage	В7	B5	B4	Н7	H5	Н4					
1	75	55	63	74	62	82					
2	83	73	75	83	79	91					
3	85	77	77	83	82	92					
4	83	80	79	83	82	92					

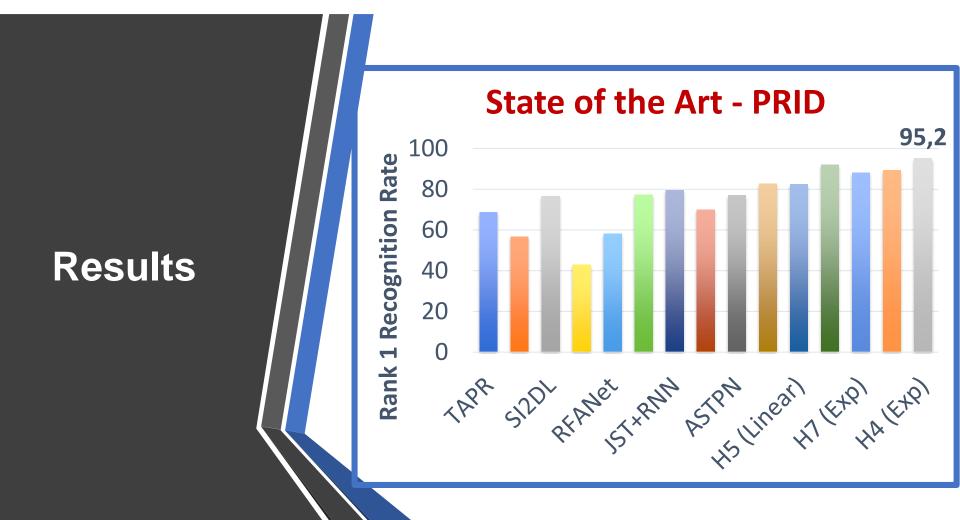
MARS											
Stage											
1	35	21	19	42	27	30					
2				57							
3				66							
4	67	65	41	68	66	58					

Rank 1 Recognition Rate after each stage of RTL





RTL for Person Re-Identification



Conclusion – Person Re-Identification

Small Gallery dataset: 100 – 200 ID

- No annotation: using handcrafted/CNN features + (un)supervised learning
- Very few annotation (20% annotation): using handcrafted/CNN features + Metric Learning
- Few annotation (50% annotation): CNN features using RTL Learning + Metric Learning

Big Gallery dataset (with annotation): 1000 – 5000 ID

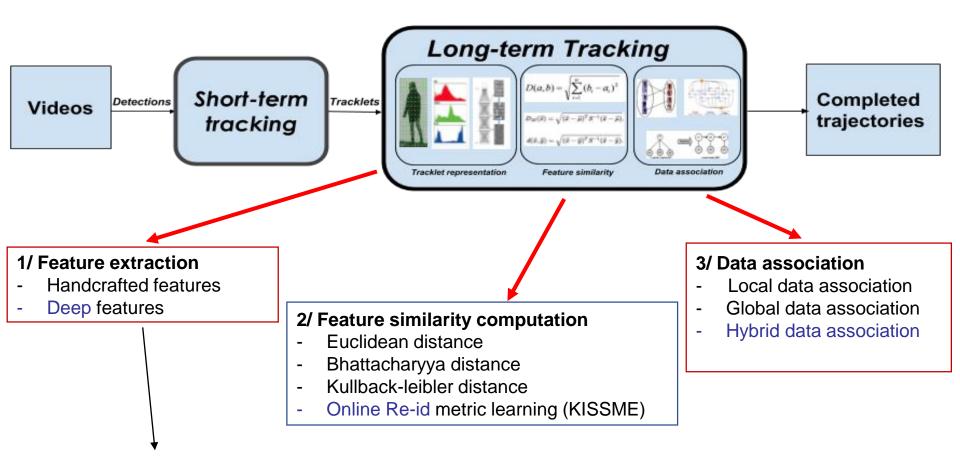
- CNN features trained
 - On Triplet loss and ID loss
 - With Partitions on width/length (spatial) + channel + temporal

Perspectives for cross-dataset ReID:

- Disentangling pose from appearance using GAN
- Signature based on semantic attributes

Thank you!

People Tracking: Long Term Tracking



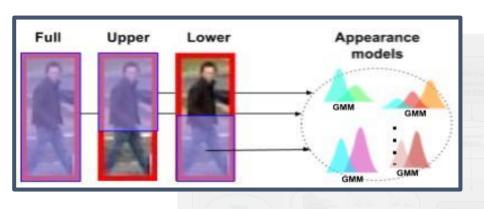
Feature extraction and selection

- Online tuning the feature weights to increase discriminative power (no training) [AVSS2016]
- Online retrieving optimal tracking parameters [AVSS2017]
- Extending powerful features for Re-Id to MOT (Handcrafted and CNN features) [AVSS2017-18]
 - RBT(HF) = Re-id Based Tracker (Handcrafted Features)
 - 2. RBT(RTL) = Re-id Based Tracker (Residual Learning Transfer)

People Tracking: RBT Re-id Based Tracker [AVSS 2017]

Objectives:

- Show that features (handcrafted and learned features) which are powerful in Re-ID domain are effective in MOT domain
- Extend the metric learning proposed for offline Re-ID to online MOT



KISSME (Keep It Simple and straightforward Metric)

- Simplicity
- Low computation cost
- effective under challenging conditions
- do not need a large number of training data (only two hundreds of pairs)

 (x_i, x_i)

- HOG
- Color Histogram
- LOMO
- MCSH
- CNN

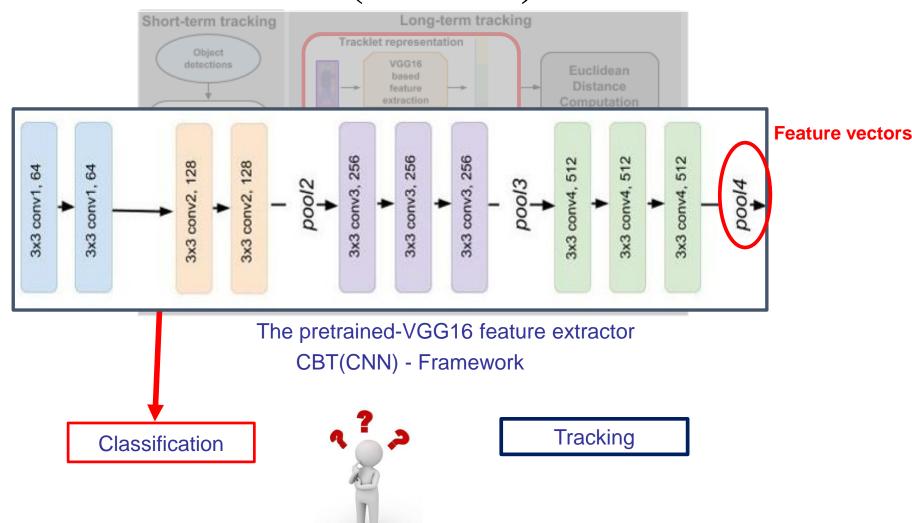
Tracklet representation

$$abla_{Tr_i} = \{M_i^{p,f} | p \in \mathbb{P} , f \in \mathbb{F}\}$$

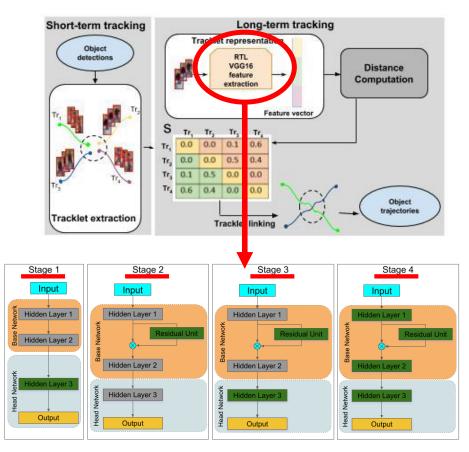
Appearance model

$$M_i^{p,f}(GMM) = \left\{ \left(\mu_{i,c}^{p,f}, \sigma_{i,c}^{p,f} \right)^c \right\} \ c = 1..C \ (component)$$
 ampling

People Tracking: RBT Learned features (VGG16)



People Tracking: RBT Residual Transfer Learning [AVSS 2018]



Residual Transfer Learning (4 step training)
Learning part is marked by green

Stage 1:

- learns the high level representations
- trains only the new head (initialize it randomly) and keeps the network's base unchanged.

Stage 2:

- Learns low level representations
- adds the residual units between the convolutional layers and initialize them randomly.
- fixes the base and head of the network and train only the residual units.

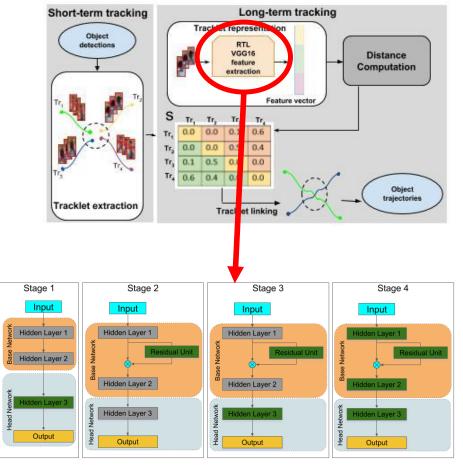
Stage 3:

- trains the head and the residual units conjointly.
- The value of loss function is low enough

Stage 4 (optional):

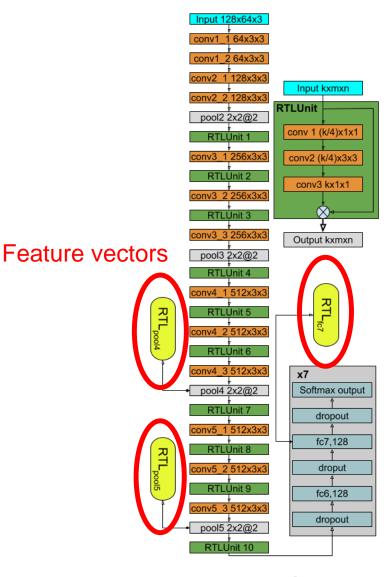
- Further improvement performance can be achieved by training the whole network.

People Tracking: RBTResidual Transfer Learning



Residual Transfer Learning (4 step training)

Learning part is marked by green



Network architecture

People Tracking: Experiments – MOT Metrics

Metric	Description	Note
MT (%)	Mostly tracked (> 80% of GT trajectory is tracked)	↑
ML (%)	Mostly lost (< 20% of GT trajectory is tracked)	\downarrow
MOTA (%)	Multiple Object Tracking Accuracy	↑
MOTP (%)	Multiple Object Tracking Precision	\uparrow
FP (#)	The total number of false positives	\downarrow
FN (#)	The total number of false negatives	\downarrow
IDSw (#)	The total number of identify switches	\downarrow
Frag (#)	The total number of times a trajectory is fragmented	\downarrow

$$MOTA = 1 - \frac{\sum_{t} (fn_{t} + fp_{t} + IDSw_{t})}{\sum_{t} gt}$$

MT: evaluates in term of object trajectory MOTA: punishes more on detection error

 fn_t : false negatives, fp_t : false positives, $IDSw_t$: ID Switches

People Tracking Experiments: State-of-the-art Comparison

MOT15

- ✓ 22 challenging video sequences with only one provided detection.
- √ 11 training and 11 testing sequences
- ✓ A diversity of outdoor scenarios:
 - strong and frequent person-person occlusions
 - crowded environment
 - captured by fixed or moving camera
 - low illumination

Training sequences

Testing sequences

SoA Tracking performances on MOT 2015

https://motchallenge.net

Trackers	Methods	MT(%)	ML(%)	MOTA(%)	MOTP (%)	FP (#)	FN (#)	IDSw (#)	Frag (#)
CNNTCM (CVPR-2016)	Offline	11.2±13.0	44.0	29.6±13.9	<u>71.8</u>	7,786	34,733	712	<u>943</u>
CEM (TPAMI-2014)		8.5±8.08	46.5	19.3±17.5	70.7	14,180	34,591	813	1,023
SiameseCNN (CVPR-2016)		8.5±20.3	48.4	29.0±15.1	71.2	5,160	37,798	639	1,316
ELP (WACV-2015)		7.5±6.3	43.8	25.0±10.8	71.2	7,345	37,344	1,369	1,804
TBD (PAMI-2014)		6.4±13.4	47.9	15.9±17.6	70.9	14,943	34,777	1,939	1,963
Moticon(CVPR-2014)		4.7±8.6	52.0	23.1±16.4	70.9	10,404	35,844	1,018	1,061
RBT(HC) Ours	Online	9.0±17.4	<u>36.9</u>	20.6±18.7	70.3	15.161	32,212	1,387	2,375
SCEA (CVPR-2016)		8.9±6.6	47.3	29.1±12.2	71.1	6,060	36,912	604	1,182
OMT_DFH (OSA journal-2017)		7.1±11.3	46.5	21.2±17.2	69.9	13,218	34,657	563	1,255
RNN_LSTM (AAAI-2017)		5.5±9.9	45.6	19.0±15.2	71.0	11,578	36,706	1,490	2,081
EAMTTpub (ECCV-2016)		5.4±7.5	52.7	22.3±14.2	70.8	7,924	38,982	833	1,485
RMOT (WACV-2015)		5.3±9.8	53.3	18.6±17.5	69.6	12,473	36,835	684	1,282
TC_ODAL (CVPR-2014)		3.2±7.9	55.8	15.1±15.0	70.5	12,790	38,538	637	1,716
GSCR (ICIP-2015)		1.8±2.14	61.0	15.8±10.5	69.4	7,597	43,633	<u>514</u>	1,010

The best performances are marked in **bold**

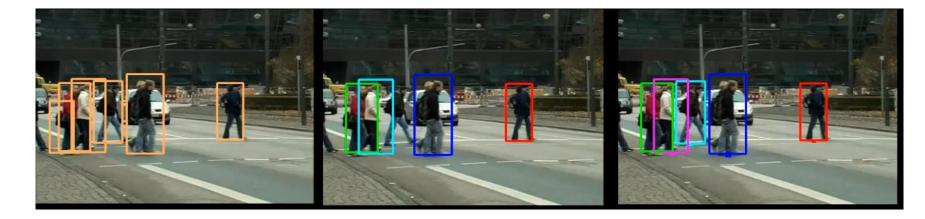
People Tracking: Long TermTracking

Multiple Object Tracking (MOT15) challenge:

Our online tracker: RBT(HF) = Re-id Based Tracker (Handcrafted Features) has the best performance [AVSS17] for Mostly Tracked (MT) metric

Sequences	Trackers	Methods	МТ ↑	ML ↓	мота ↑	мотр ↓	FP ↓	FN ↓	IDSw ↓	Frag \downarrow
TUD Crossing	CNNTCM	Offline	46.2	23.1	60.5	73.7	66	352	17	14
	RRT(HF)-Ours	Online	61.5	7.7	72.1	73.0	55	230	22	43

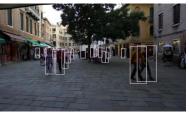
TUD-Crossing	g Detection			CNNTCM		DDT/UC\ Ouro	
	IIOHOBBBBBITTE	O.I.I.I.C	0.0	23.61414 I GHA	70.0	RBT(HC)-Ours	123



People Tracking Experiments: State-of-the-art Comparison

MOT17

- ✓ 14 challenging video sequences with 3 detections are provided: DPM, SDP, FRCNN
- ✓ 21 sequences for training and 21 sequences for testing
- ✓ A diversity of outdoor scenarios:
 - Strong and frequent occlusions
 - Low illumination
 - Fixed and moving camera
 - High object density



Training sequences

Testing sequences